Lower bounds for the clique and the chromatic numbers of a graph
نویسندگان
چکیده
G is any simple graph with m edges and n veriices where these vertices have vertex degrees d(l)zd(2)r...rd(n), respectively. General algorithms for the exact calculation of x(G), the chromatic number of G, are almost always of ‘branch and bound’ type; this type of algorithm requires an easily constructed lower bound for x(G). In this paper it is shown that, for a number of such bounds (many of which are described here for the first time), the bound does not exceed cl(G) where cl(G) is the clique number of G. In 1972 Myers and Liu showed that cl(G)rn/(n-2m/n). Here we show that cl(G)? n/[n (2m/n)(l + ~$1’21, where cV is the vertex degree coefficient of variation in G, that cl(G) 2 Bondy’s constructive lower bound for x(G), and that cl(G) z n/(n W(G)), where W(G) is the largest positive integer such that W(G) sd( W(G) + 1) [W(G) + 1 is the Welsh and Powell upper bound for x(G)]. It is also shown that cl(G)+f>n/(n-L(G))rn/(n-II) and that x(G)? n/(n-At); It is the largest eigenvalue of A, the adjacency matrix of G, and L(G) is a newly defined single-valued function of G similar to W(G) in its construction from the vertex degree sequence of G [L(G) 2 W(G)]. Finally, a ‘greedy’ lower bound for cl(G) is constructed from A and it is shown that this lower bound is never less than Bondy’s bound; thereafter, for 150 random graphs with varying numbers of vertices and edge densities, the values of lower bounds given in this paper are listed, thereby illustrating that this last greedily obtained lower bound is almost always better than each of the other bounds.
منابع مشابه
Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملCommon Neighborhood Graph
Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...
متن کاملno-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 5 شماره
صفحات -
تاریخ انتشار 1983